
Coding Dojo: Test Driven Development

A practical guide to creating a space where good 
programmers can become great programmers.



222

Source for this presentation

This presentation are de-facto notes from the 
Pluralsight.com course:

Coding Dojo: Test Driven Development

Emily Bache 

https://www.pluralsight.com/courses/the-coding-dojo

https://www.pluralsight.com/courses/the-coding-dojo


333

Overview

What is a Coding Dojo?

Learning Test Driven Development

Collaborative Games for Programmers

A Sample Series of Dojo meetings

Organizing and Facilitating

Tool for the Coding Dojo



444

What is Coding Dojo

A Dojo is a hall or space for immersive learning or 
meditation. This is traditionally in the feld of martial 
arts, but has been seen increasingly in other felds, 
such software development.
The term literally means "place of the Way" in 
Japanese.

(wikipedia)

Dojo is a japan word.

Dojo is place where people are practicing martial arts 
or other craftsmanship.

It’s place where we are meeting.



555

How do you learn in a Coding Dojo



666

Dojo Principles

Principles are like values, it‘s what informs the 
way you behave.

● We value code with tests
● Collaborative learning environment
● Interactive, collaborative and fun learning 
experience

● http://bossavit.com/dojo/archives/2005_02.html

http://bossavit.com/dojo/archives/2005_02.html


777

Dojo Principles

The frst rule of the dojo:
● You can‘t discuss a technique without code
● You can‘t show code without tests
● Code without tests simply doesn‘t exist!



888

Dojo Principles

● If it seems hard, fnd someone who can explain 
it

● If it seems easy, explain to those who fnd it 
hard

● Everyone will both teach & learn at diferent 
times



999

Practical Coding Skills

● Using IDE and keyboard shortcuts
● Pair Programming
● TDD
● Refactoring
● Designing good Test Cases
● Working incrementally
● Design using SOLID principles
● Object Oriented Paradigm
● Functional Programming Paradigm

Is there anything 
on this list that 

you‘d like 
to be better at?



10
10
10

Test Driven Development



11
11
11

How people become experts

Incidental Practice:
● Repeatedly doing something you can already do
● It becomes kind of habit

Deliberate Practice
● Trying to do something you can‘t comfortably do
● Breaking down a skill into components you practice 

separately
Deliberate and incidental practice

Dr. Erikson



12
12
12

Deliberate Practice

Need to feel safe

If the cost of failure is too high, like in your 
production code, you won‘t take the risk

Need to feel motivated



13
13
13

Good Habits

„I‘m not a great programmer; I‘m just a good 
programmer with great habits.“

- Kent Beck

Your habits are what you 
do when you‘re not really thinking. 

They‘re what you continue to do when 
you‘re felling stressed,when there‘s a deadline, 

when you‘re tired. If you have good habits, 
you‘ll continue to write tests, make design

improvements, continue to write great code.



14
14
14

Code Kata

Kata is a Japan word and it means a form. For 
example sequence of moves.

Dave Thomas proposed the idea of the „Code 
Kata“

http://codekata.pragprog.com/

Kata is a symbol of principles.

http://codekata.pragprog.com/


15
15
15

Code Kata – Leap Years

Write a function that returns true or false depending on 
whether it input integer is leap your or not.

A leap year is divisible by 4, but is not otherwise divisible 
by 100, unless it is also divisible by 400.

Examples:

1996 -> true

2001 -> false

2000 -> true

1900 -> false

The point is that you can
practice the way you solve it and 

you should use test your own development.



16
16
16

Teaching and Learning TDD

Overview – Analyze Problems, Test List, Guiding 
Test

Red – Declare & Name Arrange-Act-Assert 
Satisfy compiler

Green – Implement solution Fake it Start over

Refactor – Remove Fake, Remove Code Smell (No 
new functionality), Note new test cases



17
17
17

Fake it strategy



18
18
18

Fake it strategy



19
19
19

Fake it strategy



20
20
20

Fake it strategy



21
21
21

Fake it strategy



22
22
22

Fake it strategy



23
23
23

Fake it strategy



24
24
24

Fake it strategy



25
25
25

Fake it strategy



26
26
26

Fake it strategy



27
27
27

Fake it strategy



28
28
28

Component Skill for TDD

Designing Test Cases

Designing Clean Code

Driving Development with Tests

Refactoring Safely



29
29
29

Summary

TDD is like a series of moves from one state to 
another.

Red, green, refactor and over again..

You can demonstrate TDD on a simple code kata

TDD has component skill you can practice 
separately



30
30
30

Collaborative Games for Programmers

Prepared Kata

Randori

Randori in Pairs

Constraint Games

You aim to beat the game itself, not the other 
players. Players help each other – they collaborate. 
All the players in the game are helping one another, 
collaborating to beat the game.

There are rules, activities, and goals which you‘re 
trying to achieve.



31
31
31

Why not Competitive Games?

Learning happens more easily when you feel 
safe and relaxed.



32
32
32

Prepared Kata

King of collaborative game

Show you best solution to a Code Kata

You show all the steps that have to solve the Kata right foot 
empty editor until you have a working solution.

While you are coding you explain what you are doing and why, 
and people in the audience can ask questions and give you 
feedback on what they think about the code you‘ve written.

Everyone is learning – both presenter & audience. Presenter is 
getting feedback and audience seeing practice solution.

After the presentation, the hope is that everyone in the room 
should be able to go away and do the kata again by 
themselves. And preferably the do it better than you did 
during the meeting.



33
33
33

Prepared Kata – Tips

Practice many times before performance

Keep it short! (15 minutes)

Find a pair

Explain each coding decision

Expect that other and better solutions exist

No need to follow advice at the time, note it for 
the retrospective.



34
34
34

Randori

Another term from Karate – a free form 
interaction

Everyone in the dojo contributes some code

Show the code on a projector

60 – 90 minutes.

Take turns with the keyboard
● Time Limit (5 or 7 minutes)
● Ping Pong (2 or 3 people, up to 10)



35
35
35

Randori Rules

If you have the keyboard, you decide what to type. It is 
your decision. Everyone else might have opinions, but 
it‘s your opinion that counts.

If you are asked for help, kindly respond. But don‘t 
swamp them with conficting advice.

If you are not asked, but see an opportunity for 
improvement, choose a wise moment to speak, not just 
blurt it out straight away. It‘s not usually a wise moment 
to speak, when somebody‘s in the middle of trying to 
make some tests pass. The best opportunity for re-
factoring and improving the design is when all the tests 
are passing. So try and save your comments until then.



36
36
36

Randori in Pairs

Split the group into pairs (or trios)

Each pair works on the same Kata

A facilitator goes between pairs, helping them

In the retrospective, share code and discuss how 
you wrote it

Swap pairs and repeat the exercise from the 
beginning

Whole-day event „Code Retreat“ uses this 
format

One of the dojo principles says, 
that you should show your working, and not just the fnal code.



37
37
37

Code Retreat

Whole Day event, 5 or 6 coding sessions

All the elements of a Coding Dojo are there

Repeat the same Code Kata in every session

The Game of Life Kata is a good one for practicing 
test-driven development. As you repeat it over 
the day, the actual problem just starts to fade into 
the background and you can concentrate your 
brain on how you‘re coding. What tests you‘re 
writing, if the code smells, the steps of test-
driven development?



38
38
38

Constraint Games

The idea is that once you‘ve got to know a Code 
Kata, your brain is no longer occupied with just 
solving the problem, and you can start to 
concentrate more on how you‘re coding.

Force yourself to code diferently and test your 
limits by: Tool Constraints, Design Constraints 
and Social Constraints.

The hope is, that this practice will help you 
when you face tricky situations in your 
production code.



39
39
39

Tool Constraint Games

With a tool constraint, you deliberately restrict 
the way you use your tools.

Keyboard only – no mouse

Use a plain text editor (no IDE)

It really forces you to remember how your 
programming language actually works.

By forcing everyone to use a plain text editor, 
you bring everyone down to the lowest common 
denominator and that can really help with the 
pair programming. 



40
40
40

Design Constraint Games

You constrain the design of your code

Really small methods

We all know, that long methods, is a code smell. So what 
happens, if we artifcially restrict ourselves, to really, really 
small methods, max 2 lines in method body.

Ban conditionals

If, else --> polymorphism

Take away all if and else statements. And to do that, you have 
to fnd other ways to control the fow of execution in your 
program. For example, with polymorphism where you use 
subclasses and overriding methods.



41
41
41

Design Constraint Games

No loops

For, while, foreach --> map, flter, recursion

Without constructs like for, and while, and for each, you have 
to turn to maybe more functional style constructs, like map, 
reduce, flter, and use recursion.



42
42
42

Social Constraint Games

Ho you work together in your group or your pair

If you have a whole group working on a Randorian paths to 
facilitate can announce in the middle:

Collective green deadline! I want to see all the tests passing in all the paths 
simultaneously. Your collective green deadline is in two minutes , and I set the timer.

At this point, anyone who‘s tests are currently failing, will fnd out if they‘ve made a 
lot of changes since their last green line and how hard it is to get back to everything 
working and the tests being green. They may need to revert the code.

Even people who currently have all the tests passing can be caught out, thought. It 
can be very tempting to think, well, I could just make this small re-factoring. And still 
be in time for the deadline. And then be really embarrassed when the timer goes of, 
the two minutes is up and you‘re still in the middle of the re-factoring and you‘ve 
made a mistake and your test are failing.

Discussion about the size of steps you should take when doing test-drive 
development.



43
43
43

Social Constraint Games

Ping-Pong Pair Programming

No talking, only allow yourselves to communicate via typing 
source code, and tests into editor.

Do the absolute minimum to get the test passing, so if your 
pair writes the failing test, you write as little code as possible. 
Perhaps even deliberately misinterpret what they mean. And 
have code something just to get the test to pass.



44
44
44

Tools

http://codersdojo.org

http://cyber-dojo.com

(John Jagger)

http://codersdojo.org/
http://cyber-dojo.com/


45
45
45

Revert to Last Green



46
46
46

Links

● https://www.pluralsight.com/courses/the-coding-dojo
● http://codersdojo.org
● http://cyber-dojo.com
● http://codekata.pragprog.com/
● http://bossavit.com/dojo/archives/2005_02.html

● http://codingdojo.org/
● https://github.com/dojo-brno/dojo-brno
● http://www.juanlopes.net/dojotimer/

https://www.pluralsight.com/courses/the-coding-dojo
http://codersdojo.org/
http://cyber-dojo.com/
http://codekata.pragprog.com/
http://bossavit.com/dojo/archives/2005_02.html
http://codingdojo.org/
https://github.com/dojo-brno/dojo-brno
http://www.juanlopes.net/dojotimer/

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46

